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Phase-Locking of Semiconductor Injection Lasers
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Phase locking of several semiconductor injection lasers via mutual coupling is a
possible method for coherent power combination. In this report the equations describing
an array of semiconductor injection lasers are formulated, their solution is outlined and
the conditions needed for locking (synchronization) are derived in terms of both phenom-
enological and actual device parameters. It is found that for real devices these conditions
are at present quite stringent but not impossible to fulfill.

. Introduction

Semiconductor injection lasers are an attractive candidate

for emitters in optical communication Systems for deep space

missions (Ref. 1). However, their advantages of small size, high
reliability, good power efficiency and the possibility to
directly modulate them at high rates are offset by the fact that
the power levels emitted by a single device into a stable
radiation pattern are too low for this application. One possible
method for overcoming this problem is by the coherent combi-
nation of several semiconductor lasers, in a manner similar to a
phased-array of antennas (Ref. 2).

There are several advantages of phase locking lasers. First,
when the power of the lasers is combined incoherently, each
laser emits light in its own individual spectrum. Thus it is
necessary to have an optical filter with a wider bandwidth at
the receiver, with a resulting increase in detected background
noise radiation. Secondly, the locking of the laser components
causes a reduction in the far-field beam divergence angle. This
makes the task of subsequent beam narrowing simpler (e.g., by
requiring an optical telescope with a smaller magnification).

The purpose of this report is to review the subject of
mutual phase-locking (or synchronization) of semiconductor

injection lasers. In Section II the equations of motion of a
single-mode individual laser are developed, using the density
matrix formulation. Section III formulates the general equa-
tions for describing an array of lasers. Then some simplifying
assumptions are made and the resulting working equations are
developed. Section IV outlines the solution and discusses the
conditions necessary for locking in terms of phenomenological
coupling coefficients. Finally, Section V analyzes the coupling
coefficients in different array configurations in terms of the
device parameters and geometry. These results can serve as
basic guidelines for implementing various array designs.

Il. Equations of Motion of a Semiconductor
Laser

The equations derived in this section describe the temporal
evolution of the variables pertaining to the operation of an
individual, single-longitudinal-mode semiconductor injection

laser. All the spatial dependence is assumed to be either

uniform or averaged out. The spatial mode profile will be
considered later during the calculations of the various coupling
coefficients, as described in Section V. The main variables
describing the laser are its electric field amplitude £, the polari-
zation of its active medium P, and its inversion density /V.
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The first equation to describe the laser is the wave equation
of the lasing mode, which, in cgs units can be expressed as
(Ref. 5)

)

where w is the natural frequency of the laser resonator and @,
is the figure of merit of the laser, given by:

0 Tph

(2

Here w, is the frequency of the atomic transition, and T oh is
the average photon lifetime in the laser cavity.

To obtain the second equation of motion, we use the
density matrix formalism of a two-level system. The semicon-
ductor injection laser can be well approximated by a two-level
system because the thermalization time within its bands is
‘much shorter than the average interband transition times.

We start with the following equation (Ref. 3):

dapy, .
dt

P21
T,

WoPay +i_% (oyy =Py E- &)

where Py is the 7#th element in the density matrix, u is the
dipole moment of the transition, T, is the inelastic relaxation
time and & is Planck’s constant divided by 2m. A basic intro-
duction to the subject of density matrix formalism can be
found in Ref. 3, ch. 3.

Next we write the complex conjugate equation for Eq. (3),
noting that p,, - p,,, £, and, without loss of generality, also p,
are real variables. Adding and subtracting the equations for
Pqy and p21 , anew set of first-order differential equations for
(pyy + p3y) and (pyy - p3,;) is obtained. We can further
eliminate the equation for (g,, - p3,), thus obtaining a
second order differential equation for (o, + p21) Since p,, =
p12, and, by definition

P =Mui(p,y +0,,) “®

where ./ is the total population density, the resulting equa-
tion for (p,, *+ p3;) can be rewritten as an equation for P.
This equation is of the form
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Since we are interested in the case where wy >> 1/T,
(approximately 1015 vs 10°), and the inversion density is
defined by

N =AH(p,, - pyy) ®
then the second equation can be written in its final form
2P 24P . Zwgk
—_— e — = -
o T a e T T M (D)

The third and last equation of motion is derived starting
with the following equation (Ref. 3).

dpyy = Pyy) _ 2zuE
dt

(0, - p21)

Py Pyp) gy~ P30
T

®

1

where T, is the elastic time constant of the transition and the
subscript O denotes the steady-state solution. Using the equa-
tion for (p,; *+ pj,) which was obtained during the derivation
of Eq. (7), namely

d(py, +p;1) P +p;1 *
dt ¥ T, = —iwy (py, = 0y) ()

in Eq. (8), multiplying the resulting equation by.#, and using
the definitions in Eqs. (4) and (6), we obtain

")
4+ -
T2

where the steady-state influx of incoming carriers, N, is
defined as

+

dN
ar dat (10)

N-Ny,  op (dP
T1 'Prwo

Ny =Hpgy = Pyydg (11)




Since the polarization P oscillates at a frequency near w,,
we can assume that dP/dt ~ wyP>> P/T,, and thus we can
finally write

0_2E
* T

&I%

(12)

Equations (1), (7) and (12) are the equations of motion
describing the time evolution of the laser field, polarization
and inversion density, respectively.

Before we continue, it is useful to convert all the variables
into dimensionless parameters. The transformations are listed
in Table 1, and the resulting set of dimensionless equations,
equivalent to Egs. (1), (7) and (12), is

d*x dx _ d%v

P +ba‘t'r +Qx = -7 2 (13)

d?y dv 8,

e 2 47 ty = ) xw (13b)
—dW+—6—lw——5 - 25, LA (13¢)
dr’ 2 dt’

Note that the time derivatives are now taken with respect to
the dimensionless time ¢’ = wy?, and that §,, 8,, b, v and Q
are much smaller than unity.

lll. Equations Describing an Array of Lasers

In this section we consider the case of M semiconductor
injection lasers which we coupled among themselves. Since the
magnitude of the coupling is small under virtually all practical
situations, we need to consider only interactions between each
laser in the array and its closest neighbors. Furthermore, if we
assume that we have an array which is arranged in a one-
dimensional configuration, then each laser has two closest
neighbors, except those at the extreme locations which have
only one. Extension of the following analysis to the more
general case is straightforward, although the calculations
become more cumbersome.

In light of the above, Eqgs. (13) are modified as follows in
order to include the coupling terms (Ref. 4):
3C'i(l")ﬂ' bi’.ci(t') * ‘Ei,i—l’."iq(t’ - T;, i—ll)

- ,7,()
(14a)

+Ei,t‘+15ci+1(t' i, i) T (E) =

B +8,5,() ¥ () = 5w, (@)
EACORE PR AN G A
0 g %o 7 100 (14b)
. ) 61 ' « o)
w(t)+ - w,(t) = -8, -28,0,()
EXCORS PPN (o Tiio1)
L TR o Py (140)

where the subscripts i, i = 1, i + 1 index the lasers in the array
and the dots denote differentiation with respect to the dimen-
sionless time ¢'; £, and n,; are parameters associated with the
coupling between the ith and the jth laser via their electric
fields, and 1' is the effective dimensionless delay time in the
field coupling between the ith and the jth lasers.

It is important to note that lasers that are located at the
edge of the array (e.g., i = 1) interact only with one other laser
(since, for example x, does not exist). We can also see how
Egs. (14) can be extended to the more general configurations,
simply by adding the effects of other lasers as needed to each
equation, with the use of the proper coupling coefficients.
Several conditions can be assumed in order to simplify the
problem.

First, if the delay time is short enough, it can be neglected.
This condition is formulated as follows (Ref. 4):

= 1
W Ty = Ty <L - (15)
‘ 2 ((Oi - OJ’)
Eij - 2
Wo
or, equivalently
<< !
Ty (16)

V(wot ) - (@~ w)?

The worst case in satisfying the condition in Bq. (16) is when
w; = w;. Assuming this and also that

d
Ty = o an
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where d;; is the distance between the ith and jth lasers and #» is
the index of refraction of the medium, and noting that w, =
2me/\ (\ is the vacuum wavelength), the condition for negli-
gible delay time is

A
27rdl.].n

£, << (18)

which is satisfied under almost all practical situations.

The second simplification involves neglecting the coupling
between the laser fields via the active medium. This qondition
is formulated as

8,1, <<k (19)

In the following it will be assumed that the conditions
expressed in Eqgs. (18) and (19) are fulfilled. The consequences
of violating them will be mentioned in the next section. It will
also be assumed that the elements of the array are identical
and equispaced, so that Ei’iil' =£,b;=b,and v; =

Under all the above assumptions, the working formulas for
describing an array of coupled lasers are:

%, + b, () + E %, () %, (O] +Q,x,(6) = - WD)
(202)

8
V() 8,5,(8) + v, () = 72 w () x(t)  (20b)

5,
w, () + w @) = 28, v,() x,(¢)  (20c)
IV. Solution of the Equations

For solving the set of Egs. (20), the “fast” temporal behav-
ior is first factored out; i.e., we assume that

x; = X, cos (¢ +¢,) (21a)
v, = Vycos(Z +y,) (21b)
w, = W, = const. (21c)

where the last condition implies that the spectrum of the laser
driving signal lies well below its resonant frequency, which is
typically a few gigahertz. Substituting Eqs. (21) into Egs. (20),
results in, after a considerable amount of algebraic manipula-
tion and keeping only first-order terms under consideration,
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the following set of first-order nonlinear differential equations
for the “slow™ amplitudes of the variables:

. b
X, =->X- 2 (X ;11008 (544 ~ 9;)

v,
+X1_.1 cos (¢i—1 - ¢1)] +T sin (‘1{/, - ¢,) (223.)

. 1
¢i = 5 ( - l)—_ZX—[ i+1 sin (¢i+1 - ¢i)

V.
X, sin(@,_, - 9,)] = % % cos (¥, ¢,)(22b)

I

. 82Vi 82

V,=- T A X, W, sin (Y, - ¢,) (22¢)
.5, X,
lpi = _T vV cos (11/1 - ¢1) (22d)

i
S
W, == — Wy=8,+8, X,V;sin(¥,-4,) (22)

The first subject to be investigated is the steady-state solu-
tion of the above equations. For this we let X V W 0
(i.e., constant amplitudes) and ¢ gb,. =dw (1 e., phase Iock
ing) in Eqgs. (22). The resulting set of nonhnear algebraic
equations describing the steady-state array variables is given
by:

Y Sil’l2 (\b, - ¢'!)

8
2 2 _
”51 X; sin® (Y, - ¢,)

= & [ Xy 008 (B, ~ 9D+ X,y cos (8, - )]

(23a)
sin (%b, - ¢i) cos (\bi - ¢,)
2B+ (1- Q) +7 -
1 +3%Xi2 sin? (Y, ¢;)
X [ i+1 sin (¢i+1 - ¢1)
+X, , sin (@, - 9,)] (23b)




5,
Sw = = cos ;- 9¢) (23¢)

Since one of the ¢.’s (or y,’s) can be set arbitrarily to zero,
and in all the lasers (,; - ¢,) is the same, Eqs. (23) is a set of
2M equations with 20 unknowns, where M is the number of
lasers in the array. Once Egs. (23) are solved (which can be
done only numerically), the other variables can be expressed in
terms of the X;’s, ¢,’s and y;’s, as follows:

- 2 4)

W,
8,

1 t5o x? sin? (¥, - ¢,)
1

and

Xi sin (lp,' - ¢i)
v, = (25)

82 ; 2
1+ E [X, Sin (tp, - ¢,)]

The uncoupled (i.e., £ = 0) solution of Egs. (23) — (25) is
obtained straightforwardly. In this case the phase shifts
between the ¢,’s are undefined, the phase shift in each laser
between its field and its polarization is
o o [? +8,
tan (\bi - ¢l) = Qi_ 1 (26)

approaching m/2 as the natural frequency of the resonator is
closer to the transition frequency, and the field amplitude is

given by
_1\2
|X0|= ﬁ.Jl-(Qi 1) -1
i \182 b \bts,

where the pumping term is contained in y (see Table 1). In
Appendix A the relation between the formalism used in this
report and the solutions obtained from the laser rate equations
is discussed.

27)

Since the phenomenon of locking is a nonlinear one, we
cannot solve for the coupled case by using perturbation
methods 'on the uncoupled case, especially since the phase
relationships between the lasers have a sudden transition as
locking occurs. However, several other numerical methods,
such as successive iterations, can be used to yield the desired
results.

If we sum up Eq. (23b) fori =1, 2, . ..M, we find that if
wyq is the “center of mass” of all the uncoupled lasers’ fre-
quencies, i.e.,

ixf (1-9) =0

i=1

(28)

then we have

=X
l,ji_¢i - ) (29)

and the synchronized array oscillates at the center transition
frequency w,.

As shown in Refs. 4—6, all but one of the conditions for
stability are identical to the conditions of existence of a
solution. The stability investigation is done on the equations
of the “slow” variables in Eqgs. (22), with the derivative of the
“fast” variables set to zero (since they are “fast” they can
always follow adiabatically the “slow” variables). For semicon-
ductor injection lasers with common parameters, the following
conditions hold:

Ty, Tpy >>T, (30)
and thus W, and X; are the “slow” variables and V; are the
““fast™ variables. An exact stability analysis of this nonlinear
problem is prohibitively complicated, so a linearized sensitivity

test about the steady-state solution is carried out, as outlined
in Refs. 4 and 5.

To conclude, we can say that if a solution exists, and if the
figure of merit of the laser resonator increases when becoming
part of the array, the solution is stable. In the following, these
stability conditions will be stated more explicitly.

Successive application of Eq. (23b), usiﬁg Egs. (28) and
(29), yields the following expression for the sine of the phase
shift between two neighboring lasers:

. 1 k
sin (f,,, = 6) = - X, X, Z.;X? 1-g,)

1,2,...(M- 1) (31)

-~
n

Since the sine value of a real angle is always bounded by
unity, the right-hand side of Eq. (31) must be bounded by
unity as expressed in the following equation:
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Zk:X:?(l_Qi) <|EXk+1 Xkl

i=1
i=1,2,...(M- 1) (32)

When the coupling is not too strong, then to a first approxi-
mation X, = X, = ... X,,, and the condition in Eq. (32)
simplifies to

k
Sa-o)|<|gli=12...0-1)  @33)
i=1

The second stability condition requires that the intensity of
the field (i.e., X?) is to be a positive number, From Eq. (23a)
(using again Eqs. (28) and (29)) this condition can be
expressed as

-b
Xy 7_!;’_ > Xy €08 By = O )+ Xy 0OS (0~ 0y _y)
k=12,..M , 34)

or, using Eq. (31):

o

k 2
X?c (r-2)>, |G Xy, X, ) - LZX? (1- ﬂi)]
i=1

%1 » 2
+\/(§Xk X, -2 xia- szi)}

Li=1
k=1,2,..M (35)
Again, this condition simplifies considerably in the region

where the coupling is not strong, and thus X, =X, =...X,,.
In that case the condition in Eq. (35) simplifies to

k 2 k-1 2
y-b> [~ [Z(I'Qi):l + 22‘[2(1“9,-)]
=1 i=1

k=1,2,...m (36)

The last stability condition comes from energetic considera-
tion, The laser needs to “‘gain” something by “joining” the
array; i.e,, its Q needs to increase. This implies that

£<0 37
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Equations (33), (36) and (37) summarize the approximate
conditions for existence and stability of a solution for an array
of semiconductor lasers. It should be noted, however, that as
the coupling constant & becomes larger and approaches the
value of b(= 1/Q), these approximations cease to be accurate
and Egs. (32) and (35) have to be used instead of Eq. (33) and
(36).

The reason is that when £ is comparable to b, the change in
1/Q due to the external interaction is comparable to the
intrinsic 1/Q of the resonator. In this limit of very strong
coupling, each individual laser loses its identity almost com-
pletely, and the intensities of each laser vary considerably,
being strongly influenced by the phase-shifts among the lasers.
In this region it is more relevant to analyze the whole array as
one “super waveguide” (Ref.7). In most practical cases, how-
ever, the limit of very strong coupling is not reached.

V. Coupling Coefficients in Different
Configurations

In the preceding section the conditions for obtaining phase
locking of an array of lasers were derived in terms of phenom-
enological coupling parameters (£). In this section we will
relate these coupling parameters to the actual device param-
eters. Most of the section will discuss mutual coupling between
lasers via field interaction due to their close proximity. The
subject of diffraction coupling will also be briefly discussed.

Coupling between two semiconductor lasers which are in
close proximity to each other is equivalent to coupling
between two waveguides (see Fig. 1). The coupling strength
commonly used in the literature is defined as coupling per unit
length and is denoted by K (cm~1). We first want to establish
the relation between K and the coupling parameter ¢ used in
the wave equation. By inspection of Eq. (144) we see that Eyis
the change in the effective 1/Q of the ith laser in the array due
to its interaction with the jth laser. The fraction of the field
lost during one optical cycle is #/Q, so the fractional field
coupled during the time of one optical cycle is wf. The
fraction of the field coupled when the wave propagates a
distance of 1 cm is |X|. The wave travels this distance in a time
that is equivalent to n/\ optical cycles, where A is the vacuum
wavelength of the radiation and » is the index of refraction of
the material.

Thus, we can conclude that

wE = —K (38)




or
E=— 3G9

where k = 2an/\.

In order to calculate the coupling coefficient X between
two semiconductor lasers in close proximity, we must solve
first for the eigenmodes and the eigenvalues of a waveguide
which is made of a region with an index of refraction #n, which
is surrounded by two semi-infinite regions with an index of
refraction n, (n, <n,). Such a waveguide is depicted in
Fig. 2. By using the effective index formalism (Ref. 9) we can
reduce the two-dimentional problem of a laser waveguide
cross-section (see Fig. 1) to the one-dimensional waveguide
depicted in Fig. 2.

The transverse profile of the eigenmodes ﬁéld is given by
cos (hx) <3~ (400)
Ex) =
Ry

.
cos(%)e el |x|>2 (40b)

where
2 = 5,272_72
nt = n2ki-8 (41a)
q*> = -nlkl (41b)

and @ is the propagation constant eigenvalue of the mode (see
below). The general solution for the eigenvalue involves a
transcendental equation (Ref. 3, ch.19). However, an
approximate analytical solution is possible in the following
two cases.

(1) Weakly guided modes;i.e.,

2,2 A2
el << (X) (42)

In this case

h 2k ni-nl (432)

q = w (43b)

g ~nk (43c)

q << h<< % (43d)

(2) Well-confined modes; i.e.,

225 (X ’ 44
™M o (44)
In this case
ho % (452)
q =k n}-n (45b)
B = n,k (45¢)
q>>h = Isf_ (454)

Next we assume that the field propagating in the lasers in
one direction is of the form

Ex, z,t) = E(x, z) e/@62) (46)

This leads, after using the usual adiabatic approximation, to
the following wave equation

d*E _ 5.0 dE 2. 2\F =
2 2ip iz +(ek*-P)E =0 (CY))

We assume that the field growth along the Z direction is
due to net gain g in its own active medium as well as the
coupling K from the field of the other laser, and that the two
interacting waves propagate codirectionally. The maximum
coupling occurs when the propagation constants in the two
lasers are identical (i.e., phase-matching), in which case we can
write (Ref. 3, ch. 16):

dE
— = 8E | -iKE

az 2 (48)
We define the complex index of refraction as
~ . B
e=e+2 g (49)
k2
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Using Eqs. (48) and (49) or (47) results in the following
equation for the transverse profile of the field:

d’E,
. +(Ek*-B*)E, +2BKE, = 0

(50)
dx

Multiplying Eq. (50) by £ and integrating (also integration
by parts) yields the following expression for K

del dE, \" s o .
_E —'a dx-f(ek "B )ElEzdx
2ﬂf|E2I2dx

Since the coupling is small, we can take for £, and £, the
unperturbed field profiles, as given by Eq. (40) for £, and its
displaced version for £,.

K =

(1)

For the case of weakly guided modes (Eq. (42)) we obtain

2 2,,2
2 s(ns —-nd) kd
[s(n%— nz)] R S
K =- e 2

(52

where d is the separation between the two lasers (see Fig. 1)
and \/e = n, =n,. Note that K, and hence £, are negative, as
required (Eq. (37)).

This coupling has a maximum when

s(n% - nf) = ﬁ (53)
and the resulting optimum coupling is
1K e = N (54
- nedi\fe

Using the relationship between K and ¢ (Eq. 30), we can
write:

2 2
3 |max = (\/Ened) (552)

If we take GaAs as a typical example, then we have
A =0.9 wn and v/e = 3.6, in which case we obtain
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H > 8107 iz (55b)

max
(GaAs)

where d is expressed in micrometers.

For well-confined modes (Eq. 36), the coupling is given by

—kd/n —n"; (56)

2

K] =

)\2
e
2 e\/ng— nf §3

and is usually much smaller than the coupling in the other case
(Bgs. 52, 54).

As an example of the application of Eq. (55) to the design
of laser arrays, let us assume that the differences in the natural
oscillation frequencies of the individual lasers are due to
different lengths

(1-9) Aw, AL
=—=- (57)

2 w, L,.

where L, is the length of the cavity of the ith laser. From
Eqs. (33), (55) and (57) we find that

k

>ar,

i=1

2
35-10“4L(—2*) i=1,2,...M (58)

when L;=L,=L;=L. For L =300 um and A\/d 0.1, we
obtain

<154

k
> ar,
i=1

which is a rather stringent requirement. For (A/d) ~ 0.2, the
above constraint is increased to 60 A.

We can now check the validity of the approximation of
Eq. (19) by neglecting the coupling of the fields via the active
medium,. Assuming weakly guided modes (which provide for
stronger coupling) and that a uniform carrier profile exists at
the laser stripe of a width s as well as an additional region of
width s,/2 on both of its sides, we obtain

n = qls+sy) e (59




Using Eqs. (33), (43b) and (52), we see that the condition
expressed in Eq. (19) is fulfilled if the following condition
holds

Ao s
n 2

(60)
where An=n, - n;. The condition implied in Eq. (60) states
that the fractional change of the index of refraction across the
laser structure is much larger than the normalized spontaneous
carrier lifetime, and this condition holds in most cases. If
necessary, the effect of 1 can be included by replacing |£| by
[E]* 8,in| in all the stability conditions. We see that the
increased coupling via the active region allows phase-matching
for greater frequency deviations.

Finally, we will briefly summarize the case where we have
diffraction coupling. The lasers are put in an external cavity,
and part of the field of each laser is reflected into the other
lasers producing a coupling between them. The magnitude of
the coupling coefficient in this case has been determined in
Refs. 5, 6, and 8. The general calculations in this case do not
yield simple analytical expressions (Refs. 5, 8). However, if we
assume that the sides of the lasers facing the external mirror
are coated with an anti-reflection coating and that neighboring
lasers can interact with one another, i.e.,

Jdts

BF'F Lext

(61)

where 0., is the far-field angle of the laser radiation pattern
in the plane of the array configuration, and L., is the
distance from the end face of the laser to the external mirror
(Fig. 3), then the coupling constant is given by (Ref. 6).

1{n)3 1
= — 62
Edtff 2 (217) Ls(s + d)(ng - nf) (62)

where L is the total length of the resonator. The coupling
constant is inversely proportional to the distance between the

lasers, to the length of the resonator and to the stripe width of
each laser. The last functional relationship is due to the fact
that the far-field angle of the laser radiation is inversely
proportional to its stripe width.

Dividing Eqgs. (55) and (62) we find that the ratio between
the two is approximately

Efields overlap _ (_L__) % (1 +S—)An
§ difpraction An d

(63)

Depending on the array parameters, one of the two
coupling mechanisms is dominant. For example, from Eq. (63)
we see that as the separation d between the individual lasers
increases, there is more coupling due to diffraction than due to
field overlap (note, however, that both couplings are at least
inversely proportional to d).

VI. Conclusions

The problem of phaselocking of several semiconductor
injection lasers via mutual coupling has been investigated.
First, the equations of motion of the parameters of both
individual lasers and an array of lasers were derived,
considering both coupling via field overlapping and inter-
actions via the laser active media. The solution of the
equations was outlined and, more important, the conditions
for obtaining phase-matching were derived. These conditions
put restrictions on both the sign and the magnitude of the
coupling constraint: it must be negative so that phase-matched
(synchronized) operation is energetically favorable, and its
magnitude must be greater than the standard deviation of the
lasers’ frequency deviations from the laser transition
frequency.

Finally, the actual magnitudes of the coupling coefficients
in several configurations were calculated, and the results
indicate that it is possible, although not trivial, to achieve the
coupling conditions.
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Table 1. List of transformations into dimensionless parameters

New
Old . s
. dimensionless Transformation
variable
parameter
Time t t P wgt
NT2
Electric field E X x = 5
. 1
Polarization P v p=—0FP
uN 0
. . 2
Inversion density N w w==—N
Ny
4mu?
Pump density Ny ¥ v = 1;;‘ TNy
. —1 2
Elastic rate of the T, 8y 5, = 7
atomic transition “@olt
(transition linewidth)
X —1 2
Inelastic rate of the T, 5, 8y =
atomic transition woTy
(corresponds to the
carrier’s lifetime)

. . 1f{w
Figure of merit of Q b b = —|—
laser resonator Q\wo
Frequency of laser w Q Q=

oscillation
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Fig. 1. Schematic configuration of two semiconductor lasers in
close proximity
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Fig. 2. Schematic drawing of a one-dimensional
symmetric slab waveguide
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Fig. 3. Schematic configuration of several semiconductor lasers in
an external resonator




Appendix A

Relation Between Parameters in this Article and
Parameters Appearing in the Laser Rate Equations

The linearized steady-state rate equations can be written as (Ref. 10)

0 =-2- ANS - = (A-1)
0 = ANS - = (A-2)

where N and S'are the carrier and photon densities, respectively, 7; and 7, are the carrier
and photon lifetimes, respectively, 4 is the gain coefficient, J is the current density, g is
the electron charge and d is the thickness of the active region.

Solution of Egs. (A-1), (A-2) yield

)
-_ 4

N Tv4r s a-3)
JAr T

ArS =P (A-4)

From Eqs. (24), (29) and Table 1 we obtain

Ny

N=—F7"7— (A-5)

1+ T_l_ X2
T,
Thus, we can identify N, with
J7g
Ny =3 (A-6)
and
T )
?2X =A7S (A7)

Since by definition X2 = E2/hw, and T, = 7,, we also obtain the following relations:

2 ' (A-8)
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and

2 (A-9)

Thus we see that the rate equations formalism and the formalism used in this report
are equivalent when applied to individual lasers. Of course, the rate equations are just
particle bookkeeping equations. They do not describe the electromagnetic wave and thus
cannot be used in formulating the synchronization problem.




